PENTACYCLODECANE CHEMISTRY—III FRAGMENTATION PATTERNS OF PENTACYCLODECANE DERIVATIVES ON ELECTRON IMPACT¹

WENDELL. L. DILLING and MARCIA L. DILLING Edgar C. Britton Research Laboratory and Chemical Physics Research Laboratory, The Dow Chemical Company, Midland, Michigan 48640

(Received 4 March 1966; in revised form 18 April 1966)

Abstract—The fragmentation patterns on electron impact of 10 derivatives of pentacyclo- $[5.3.0.0^{s,0}.0^{s,0}.0^{s,0}.0^{s,0}.0^{s,0}]$ decane and 5 derivatives of pentacyclo $[5.3.0.0^{s,0}.0^{s,0}.0^{s,0}]$ decane were investigated. The predominant mode of fragmentation was cleavage of the pentacyclodecane nuclei in half except for the ketone derivatives. Other major fragmentation routes are discussed.

CONSIDERABLE interest has been shown recently in the synthesis and chemistry of derivatives of pentacyclo $[5.3.0.0^{2.6}.0^{3.9}.0^{4.8}]$ decane (I) and pentacyclo $[5.3.0.0^{2.6}.0^{3.9}.0^{5.8}]$ decane (XI).^{1.3} The purpose of this paper is to present data on the major fragmentation pathways of some of these compounds when bombarded by 75 eV. electrons in the gas phase in a mass spectrometer.

EXPERIMENTAL

Mass Spectra. The mass spectra of all compounds except the hydrocarbon I were obtained with a magnetically scanning 90° sector spectrometer with an electron ionizing voltage of 75 eV. The ion source temp was $\sim 250^\circ$. The samples were vaporized from a 5, 1, or 0.51. glass reservoir through a molecular leak into the ion-source. The inlet temp was 200° for compounds IX and XI-XV; 250° for II-VI, VIII and X; and 270° for VII. The mass spectrum of I was obtained at room temp in a Bendix Time-of-Flight mass spectrometer.¹ Evidence that the compounds were thermally stable under the experimental conditions was based on the high m.ps (>240°) of all the chlorinated derivatives except IX, and the established thermal stability of I at 300°,¹ XI at 450°,⁸ XII at 250°, and XIII at 425°.⁴ The relative ion peak-intensities in the mass spectra of IX were the same when the spectrometer inlet temps were 200° and 250°. Compound XI gave identical spectra at 150° and 200°. The spectra of XII were the same at 100° and 200°.

Compounds. References to the syntheses and structure proofs of all the compounds except the alcohol XII are given in Table 1.

Pentacyclo[5.3.0.0^{a,a}.0^{a,a}.0^{a,a}]decan-4-ol (XII). A solution of the ketone XIII⁴ (14.6 g, 0.100 mole) in 100 ml dry ether was added dropwise over a period of 1.3 hr to a stirred LAH slurry (2.0 g, 0.05

- ¹ Part II, Wendell. L. Dilling, H. P. Braendlin and E. T. McBee, Tetrahedron, 23, 1211 (1967). Part I, E. T. McBee, Wendell. L. Dilling and H. P. Braendlin, J. Org. Chem. 27, 2704 (1962).
- ⁸ See also references cited in Ref. 1, Part II. Alternate names, used in *Chem. Abstr.*, for I and XI are octahydro-1,3,4-metheno-2H-cyclobuta[cd]pentalene and octahydro-1,2,4-metheno-3H-cyclobuta-[cd]pentalene respectively.
- ^a G. O. Schenck and R. Steinmetz, Chem. Ber. 96, 520 (1963).
- ⁴ R. C. Cookson, J. Hudec and R. O. Williams, Tetrahedron Letters, No. 22, 29 (1960).

mole) in 100 ml ether under N_s at room temp. After stirring for ca. 20 hr the mixture was hydrolysed with 10 ml of conc. H₂SO₄ in 200 ml. water. The ether layer was separated and combined with two ether extracts of the aqueous layer. After washing with water and drying, the solvent was evaporated leaving 8.4 g (57%) of nearly pure XII. Recrystallization from heptane and sublimation at 100° (40 mm) gave white crystalline XII, m.p. 173–174°; $\gamma_{001_4}^{001_4}$ 3630, ~3330, 2970, 2860, 1450, 1078, 1045 cm⁻¹; essentially no UV absorption, $\epsilon_{1100\mu}$ ~15; NMR spectrum (CCl₄): a singlet at -4.21 ppm (from internal Me₄Si) (relative area 0.2), a singlet at -3.92 (1.8), a multiplet at -3.15 to -2.15 (7.9) for the tertiary protons, and two unsymmetrical doublets centered at -1.65 and -1.39 (2.1) (J ~ 11.5 c/s.) for the methylene protons. Shaking the NMR sample with D₅O decreased the relative intensity of the peak at -3.92 to 0.8 and produced a peak at ~ -4.6 for HOD. The two singlets at -4.21 and -3.92 probably represent the protons on the hydroxyl-bearing carbon atom for the two stereoisomers of XII. Gas chromatographic analysis on 17 different columns showed only one peak. (Found: C, 81.07; H, 7.82. Calc. for C₁₀H₁₁O: C, 81.04; H, 8.16%.)

RESULTS AND DISCUSSION

The data presented in Table 1 show that in most cases the predominant mode of fragmentation was cleavage of the pentacyclodecane nucleus in half, unaccompanied by major amounts of the random fragmentation and rearrangements often observed with hydrocarbons and halocarbons. For symmetrical molecules, e.g. VII, these two fragments were the same, $C_6Cl_a^+$, while an unsymmetrical molecule such as V gave

two different fragments, $C_5HCl_5^+$ and $C_5Cl_6^+$. Usually the assignment of the empirical formulas of the ions was unambiguous due to the observation of distinct Cl^{36}/Cl^{37} ratios⁵ and the m/e values. Typical spectra are shown in Figs. 1-4.⁶

In the fragmentation patterns of IV, VIII, IX and X the most abundant ions were not those formed solely from cleavage of the pentacyclodecane nucleus in half (Table 1). However, the majority of the other more abundant ions arose from this type of cleavage accompanied by the loss of a chlorine atom. For example the four most abundant fragments from VIII (Fig. 2) were $C_8Cl_4HOH^+$, $C_8Cl_8HOH^+$, $C_8Cl_8^+$ and $C_8Cl_8^+$.

Other exceptions to the predominant mode of cleavage noted above are readily explained as being due to the nature of a functional group. The acetate IX fragmented preferentially to give CH_sCO^+ (m/e 43) as the most abundant ion.⁷ However, cleavage of the pentacyclodecane nucleus in half was still a major fragmentation route. The ketone XIII gave none or very little $C_sH_4O^+$ while the chlorinated ketones X and XV gave only small amounts of $C_sCI_4O^+$. These oxygenated ions may be

- ⁶ J. H. Beynon, Mass Spectrometry and its Applications to Organic Chemistry p. 299. Elsevier, New York (1960).
- ⁶ The m/e values listed in Figs. 1 and 2 are calculated using only the Cl¹⁴ isotope.
- [†] For the mass spectra of acetates, cf. Ref. 5, p. 383.

13
Ę
ξ
Ę
Ę
3
꾩
8
g
3
¥
2
A.
Š
F
¥
Å
-
ð
Ē
Ä
Β
A
Z
3
E
5
Z
-
Z
Ä
Š
E
ð
Ś
Σ
ι.
9
Ę
F

References	1	-	1	-	-	-	8,9,10	-	I	10,11
% Total Ionization**	58.4	67.1	56-4	65:4 3:3*	38.2 11·9	27·1 19·0	44-8	37.7' 4.0	4-8* 2-1	35-7 ¹ 5-1
m/e Observed•	8	134-139	168-175	202-210 270-278	236-244 270-280	236-244 270-280	270-280	218-226 270-278	260-266 270-278	270-280 216-222
C, Fragments	C , H,⁺	C,H,CI,⁺	C,H₁Cl,⁺	כינוי+ כינוי+	c,Hcl, c,cl,	C,HCI,+ C,CI,+	c,cl,⁺	C,CI,+OH⁺ C,CI,+OH⁺	с,сі,+юсосн,+ с,сі,нососн,+	כיכוי+ כיכויס
m/e Observed•	132	233-239	301-309	437-447°	471-483*	506-518"	540-554	453-461*	530-538	486-496
Molecular Ion (M [•]) or Largest m/c Fragment Observed	C ₁₆ H ₁₁ *(M+)	C ₁₆ H ₆ Cl ₁ *	C ₁₆ H ₄ Cl ₆ +	Cı .H .CI.*	C ₁₀ HCl ₁₀ +	C ₁ ,HCl ₁₁ *(M*)	C ₁₀ Cl ₁₁ *(M+)	С,,СІ,НОН+	C ₁₀ Cl ₁₀ HOCOCH ₁ *(M+)	C1.CI1.0'(M+)
Molecular Formula	C ₁ ,H ₁₁	C ₁ ,H,CI,	C ₁₆ H ₆ Cl	C, H,CI,	C ₁₀ HCl ₁₁	C, HCI,	C ₁ Cl ₁₁	C ₁₀ H ₅ Cl ₁₆ O	C11H(C11,01	C16C110
l Structural Formula	团				Han.					
Compound Number	•	ช =	, III	N	>	IN	IIV	NIIV	X	×

.

W. L. DILLING and M. L. DILLING

1,3		1,4	-	1,11,12
51-1	18·6 8·1	4-6 °	34-7	12.7*
8	66 82	8	218-226	216-224
C,H,⁺	C,H, .* C,H,OH+*	C,H,≞	с,сі,нон•	C,CI,O
132	148	146	401-407°	397-405
C ₁₆ H ₁₁ +(M+)	С _{і•} Н _{іі} ОН•(М•)	C,eH,eO*(M*)	C₁₀Cl,(HOH)₁⁺	C₁•CI,O₁+
C ₁₆ H ₁₁	C ₁₄ H ₁₁ O	C ₁₄ H ₁₆ O	C ₁ ,H ₁ Cl ₁ O ₁	C ₁₀ Cl ₁ O1
B		B		
xi	шх	ШХ	XIV	x

Via based on n.m.r data.^{1, f} C_aCl₄HOH⁺ was the most abundant fragment; C_aCl₃HOH⁺ and C_aCl₃⁺ were more abundant than C_aCl₄⁺. CH₃CO⁺ (44.2% total ionization due to overlapping of peaks of other fragment ions. • Unkess otherwise noted these fragment percentages represent the most intense peaks in C₆Cl₄⁺, C₆Cl₄HOH⁺, and C₆HCl₄⁺ were more abundant than C₆Cl₄^{+, -1} C₆Cl₆⁺ was the most abundant; C₆Cl₄^{+, -1} and C₆Cl₄^{+, -1} were more abundant than C₆Cl₄O⁺. [•] Although unlikely, this fragment could be C₄H₅O⁺. [•] This fragment could also be C₆H_{10⁺}. [•] C₆H₅⁺ (or C₆H₆O⁺), C₆H_{10⁺} (or C₆H_{10⁺}), C₆H_{10⁺} (or C₆H₆O⁺), C₆H_{10⁺} (or C₆H₆O⁺), C₆H_{10⁺} (or C₆H_{10⁺}), C₆H_{10⁺}), C₆H_{10⁺}), C₆H_{10⁺}), C₆H_{10⁺} (or C₆H_{10⁺}), C₆ C,H,⁺ (or C,H,O⁺) were more abundant than C,H,⁺ (or C,H,O⁺) (see Figure 4). No detectable C,H,O⁺ (m/e 80) fragment was observed. C,GI,O⁺ was • The ranges of m/c values of the Cl isotopes were those actually visible in the spectra. • The percent total ionization was determined from the equation: % total ionization = 100 (peak intensity/2 peak intensities). The C¹⁴ isotope peaks for I, XI, XII and XIII were not included in the calculated percent of the spectra. * References to synthesis and structure proof of compounds. * The mass spectra of I and XI were nearly identical. / The structure of III could also be the isomers IIIa or IIIb based on n.m.r. data.¹ IIIb is unlikely based on the mass spectrum observed. Instrumental accuracy for m/e values >~430 for ions containing H was ±2 m/e units. + C₆Cl₂+ and C₆H₅Cl₃+ were more abundant than C₆Cl₄+. • The structure of VI could also be the isomer of the total ionization) was the most abundant fragment; C₁,Cl,HOCOCH₁⁺ and C₂Cl,HOCOCH₁⁺ were the second and third most abundant fragments. more abundant than C₆Cl₄O⁻

- H. J. Prins, Rec. trav. chim. 66, 455 (1946).
- [•] J. S. Newcomer and E. T. McBee, J. Amer. Chem. Soc. 71, 952 (1949).
- 16 E. T. McBee, C. W. Roberts, J. D. Idol, Jr. and R. H. Earle, Jr., J. Amer. Chem. Soc. 78, 1511 (1956).
 - ¹¹ G. W. Griffin and A. K. Price, J. Org. Chem. 29, 3192 (1964). ¹⁸ P. E. Eaton, Ph.D. Theste, Harvard University (1960).

FIG. 3. Mass spectrum of pentacyclo[5.3.0.0^{9,0}.0^{9,0}.0^{6,0}]decane (XI)

FIG. 4. Mass spectrum of pentacyclo[5.3.0.0^{8,4}.0^{8,4}.0^{6,4}]decan-4-one (XIII)

cyclopentadienones which arise as outlined below. The low relative abundance of these ions may reflect the known instability of these cyclopentadienones.¹³

We are suggesting that a likely fragmentation route for the ready formation of the C_5 ions is cleavage of two cyclobutane and two cyclopentane rings to give a cyclopentadiene ion and neutral molecule. The cleavage of four-membered rings into two two-carbon containing moieties on electron impact is a common occurrence¹⁴ and would explain reaction (1). On the other hand, reaction (2) involves a slightly different mode of electron rearrangement. The relief of strain in these molecules would provide a driving force for the observed cleavage.

- ¹⁸ For a review of cyclopentadienones cf. M. A. Ogliaruso, M. G. Romanelli, and E. I. Becker Chem. Revs. 65, 261 (1965).
- ¹⁴ American Petroleum Institute Research Project 44, Catalog of Mass Spectral Data, National Bureau of Standards, Washington, D.C., 1949, Serial No. 416; ¹ G. W. Griffin and L. I. Peterson, J. Amer. Chem. Soc. 84, 3398 (1962); ⁴ J. J. Becreboom and M. S. von Wittenau, J. Org. Chem, 30, 1231 (1965).

At this point it is of interest to contrast the major type of fragmentation found for these pentacyclodecane derivatives with the mass spectra reported for the caged

compounds adamantane (XVI)¹⁶ and congressane (XVII).¹⁶ The latter two hydrocarbons have no easy mode of skeletal fragmentation; consequently the molecular ion peak is the most intense in the mass spectrum of each compound.^{15,16} An ion of m/e 91 was the second most abundant ion formed from congressane. It was suggested that this ion resulted from a symmetrical cleavage of the molecular ion in half, followed by skeletal rearrangement and loss of three hydrogen atoms to give the

tropylium ion.¹⁶ In contrast the spectra reported in this paper show that the pentacyclodecane derivatives have a relatively low energy path for cleavage in half. As a result the molecular ions have low stabilities, and intense peaks are observed for the C_5 fragments. The fused cyclohexane derivatives XVI and XVII are unstrained, a factor also contributing to their lack of fragmentation. The mechanisms shown above for the pentacyclodecanes have not been proven, but appear reasonable from the data presented.

In the spectra of IV-VI, VIII and IX, percent total ionization measurements showed the molecular ion decomposed more often to fragments in which the positive change resided with the C_5 portion of the molecule containing hydrogen and/or oxygen, and decomposed less often to $C_5Cl_5^+$. This is presumably due to the destabilizing inductive effect of the six chlorine atoms in $C_5Cl_5^+$.

Of the compounds studied only the acetate IX and the diol XIV did not fragment to give numerous doubly charged ions. The peaks for some doubly charged ions were more intense than those for their corresponding singly charged analogs. For example the hexachloride III gave a larger peak for $C_{10}H_8Cl_8^{3+}$ than for $C_{10}H_8Cl_8^{+}$. In general these compounds gave more abundant doubly charged ions than are normally

¹⁴ R. C. Fort, Jr. and P. v. R. Schleyer, Chem. Revs. 64, 286 (1964).

¹⁴ C. Cupas, P. v. R. Schleyer and D. J. Trecker, J. Amer. Chem. Soc. 87, 917 (1965).

observed in the mass spectra of organic compounds.¹⁷ Beynon has discussed the formation of doubly charged ions from strongly bonded ring compounds.¹⁸

The most numerous ions formed from fragmentation of the chlorinated derivatives were those containing five and ten carbon atoms. C_{1-4} and C_{6-9} ions were of low abundance or not detected at all. For example III fragmented to give $C_{10}H_{\delta}Cl_{4}^{+}$, $C_{10}H_{5}Cl_{3}^{+}$, and various other combinations of $C_{10}H_{2}Cl_{9}$, with lesser amounts of ions containing $C \neq 5$ or 10. Of the non- C_{5} and C_{10} ions, the C_{9} ions were generally detected to a greater extent than C_{6-8} and C_{1-4} ions, e.g., the alcohol VIII gave significant ion-currents due to $C_{9}HCl_{8}^{+}$, $C_{9}Cl_{7}^{+}$ and $C_{9}HCl_{6}^{+}$. Probably these C_{9} ions arise from expulsion of one of the methylene bridges since only two carbon-carbon bonds would have to be broken while loss of any of the other eight carbon atoms would require the breaking of three carbon-carbon bonds.

In the spectrum of the perchlorocarbon VII (Fig. 1) it is interesting to note the presence of peaks for $C_{10}Cl_{12}^+$, $C_{10}Cl_{11}^+$, $C_{10}Cl_{9}^+$, $C_{10}Cl_{8}^+$, $C_{10}Cl_{9}^+$. Although the predominant mode of fragmentation of VII was cleavage to give the half-molecular ion, the majority of other peaks arose from ions formed by successive losses of chlorine atoms from the molecular ion. The ten-carbon atom framework was retained although not necessarily in the same arrangement. The data show that if the molecular ion does not fragment in half, the next most likely decomposition route is the loss of chlorine atoms without loss of carbon atoms to give both abundant $C_{10}Cl_{z}^+$ and $C_{10}Cl_{z}^{2+}$. At present we have no explanation for the absence of $C_{10}Cl_{10}^+$. The only other appreciable number of ions from VII were those containing nine carbon atoms which likely arose from expulsion of one of the methylene bridges.

The mass spectra of the $C_{10}H_{12}$ isomers I and XI were quite similar, and although both showed molecular ion peaks at m/e 132, the intensities of the M⁺—H peaks were greater. In addition peaks corresponding to the loss of up to six hydrogen atoms from the parent ion were detectable. Peaks for C₂ through C₁₀ ions were observed, and C₇H₇⁺ at m/e 91 may be the tropylium ion. A possible mode of its formation from I is outlined in reaction sequence (3). A similar mechanism can be drawn in the case of XI with only a slight modification in the first step. Ion *a* is the same as that proposed for the first step of the rearrangement of the toluene molecular ion to give the tropylium ion.¹⁹ There are a limited number of references in which it is postulated that tropylium ions are formed from non-benzenoid molecules on fragmentation under electron impact.^{16,20}

The alcohol XII gave a measurable molecular ion with M⁻—H being more abundant than M⁺ as was observed with the hydrocarbons I and XI. Expected molecular ion decompositions occurred to give M⁺—2H, 3H, CH₃, OH, H₂O, H₃O, CO and CH₁₋₆O. M/e 91 could again arise from tropylium ion formation as outlined above.

The ketone XIII gave a more intense molecular ion peak than an M⁺-H peak

H. Budikiewicz, C. Djerassi and D. Williams, Interpretation of Mass Spectra of Organic Compounds p. 155. Holden-Day, San Francisco (1964).

¹⁷ F. H. Field and J. L. Franklin, *Electron Impact Phenomena and the Properties of Gaseous Ions* p. 184. Academic Press, New York (1957).

¹⁸ Beynon, Ref. 5, p. 282.

¹⁹ F. Meyer and A. G. Harrison, J. Amer. Chem. Soc. 86, 4757 (1964).

indicating that the first hydrogen atom lost from XII was a part of the >CHOH group. Losses of CO and CHO appeared to be the favored types of fragmentation, and m/e 91, $C_7H_7^+$, was also significant (Fig. 4). The CO loss is again an example of the expulsion of one of the methylene bridges from these caged structures.

(3)

Most of the spectrum of XIV appeared to arise from C_{10} , C_9 and C_5 ions, a similarity noted above with the other compounds of this series. M⁺--Cl,CO in the spectrum of XV gave rise to a large ion contribution for $C_8Cl_7CO^+$; elimination of one and two neutral CO molecules may provide a driving force for the formation of significant amounts of other C_9 ions as well as C_8 and C_4 ions. Again abundant doubly charged ions were produced.

The loss of CO from the ketones X, XIII and XV under electron impact is similar to that observed for other cyclic ketones.²¹ The similarity between the cracking pattern under electron impact and the photochemical breakdown of cyclic ketones²¹ seems to be borne out to some extent with these compounds.²²

In conclusion we would like to point out the novel mode of cleavage of the pentacyclodecane nucleus in half and the similarity of the fragments from the isomeric structures. These compounds do not in general undergo the random fragmentation and rearrangement often observed with hydrocarbons and halocarbons. A knowledge of the major fragmentation route for these compounds will be of aid in assigning structures of unknown derivatives of these systems such as compound III (Table 1). We intend to study other derivatives of these series to determine if fragmentation occurs in the same manner as shown above, and also to extend the study to related caged structures.

²¹ N. J. Turro, D. C. Neckers, P. A. Leermakers, D. Seldner, and P. D. Angelo, *J. Amer. Chem. Soc.* 87, 4097 (1965).

¹⁹ G. W. Griffin and A. K. Price, private communication.